Common-path interference and oscillatory Zener tunneling in bilayer graphene p-n junctions.
نویسندگان
چکیده
Interference and tunneling are two signature quantum effects that are often perceived as the yin and yang of quantum mechanics: a particle simultaneously propagating along several distinct classical paths versus a particle penetrating through a classically inaccessible region via a single least-action path. Here we demonstrate that the Dirac quasiparticles in graphene provide a dramatic departure from this paradigm. We show that Zener tunneling in gapped bilayer graphene, which governs transport through p-n heterojunctions, exhibits common-path interference that takes place under the tunnel barrier. Due to a symmetry peculiar to the gapped bilayer graphene bandstructure, interfering tunneling paths form conjugate pairs, giving rise to high-contrast oscillations in transmission as a function of the gate-tunable bandgap and other control parameters of the junction. The common-path interference is solely due to forward-propagating waves; in contrast to Fabry-Pérot-type interference in resonant-tunneling structures, it does not rely on multiple backscattering. The oscillations manifest themselves in the junction I-V characteristic as N-shaped branches with negative differential conductivity. The negative dI/dV, which arises solely due to under-barrier interference, can enable new high-speed active-circuit devices with architectures that are not available in electronic semiconductor devices.
منابع مشابه
Gate tuneable beamsplitter in ballistic graphene
We present a beam splitter in a suspended, ballistic, multiterminal, bilayer graphene device. By using local bottomgates, a p-n interface tilted with respect to the current direction can be formed. We show that the p-n interface acts as a semi-transparent mirror in the bipolar regime and that the reflectance and transmittance of the p-n interface can be tuned by the gate voltages. Moreover, by ...
متن کاملSpin-dependent Klein tunneling in graphene: Role of Rashba spin-orbit coupling
Within an effective Dirac theory the low-energy dispersions of monolayer graphene in the presence of Rashba spin-orbit coupling and spin-degenerate bilayer graphene are described by formally identical expressions. We explore implications of this correspondence for transport by choosing chiral tunneling through pn and pnp junctions as a concrete example. A real-space Green’s function formalism b...
متن کاملOscillating Magnetoresistance in Graphene p-n Junctions at Intermediate Magnetic Fields.
We report on the observation of magnetoresistance oscillations in graphene p-n junctions. The oscillations have been observed for six samples, consisting of single-layer and bilayer graphene, and persist up to temperatures of 30 K, where standard Shubnikov-de Haas oscillations are no longer discernible. The oscillatory magnetoresistance can be reproduced by tight-binding simulations. We attribu...
متن کاملPolarization-induced Zener tunnel diodes in GaN/InGaN/GaN heterojunctions
By the insertion of thin InxGa1!xN layers into Nitrogen-polar GaN p-n junctions, polarizationinduced Zener tunnel junctions are studied. The reverse-bias interband Zener tunneling current is found to be weakly temperature dependent, as opposed to the strongly temperature-dependent forward bias current. This indicates tunneling as the primary reverse-bias current transport mechanism. The Indium ...
متن کاملMonday DY 9 : Graphene II ( organised by TT )
We predict and analyze radiation-induced quantum interference effect in low-dimensional graphene based n-p junctions. In the presence of radiation the ballistic transport of electrons is determined by two processes, namely, by the resonant absorption of photons near the "resonant points", and by the strong reflection from the junction interface, occurring at the "reflection points". There are t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 34 شماره
صفحات -
تاریخ انتشار 2011